
SHINSHU UNIVERSITY

 Graduate School of Science and Technology,

 Shinsu University

09TA684A

 Pratima K. Shah

Automatically Generation of N-bit Logic Circuit Components in

Extended LOTOS from High-Level Functional Programming

Language: HDCaml

Outline

Workflow Diagram from HDCaml to LOTOS

 Formal Description Language and High-level Language

Example of HDCaml code and Generated LOTOS code

Case Study

1

Conclusion and Future Task

Background and Purpose

 DILL - Digital Logic Circuit Library

Background and Purpose

2

3

Background

HDL (Hardware Description Language) and Formal Verification

Formal Description Technique

 LOTOS

 E-LOTOS

 DILL (Digital Logic in LOTOS)

High-Level Language

 HDCaml

 Ocaml (Objective Caml)

Code Generation

 Technique to generate target code from source code for hardware

 implementation and verification

4

Purpose of the study

1. To extend the HDL code generator module to map DILL library component

in order to generate the Formal Specification Code for Hardware

implementation and Formal verification.

2. Code generation reduces the coding cost and time.

3. To apply DILL Data types for the purpose to split and concat the BitArray

(Bus) into an individual Bit (Wire) and vice versa in the generated code

during model checking.

 5

work-flow diagram From HDCaml to LOTOS

• The HDCaml library archive

 and the circuit description

 code are compiled and the

 LOTOS code is generated.

• The generated LOTOS

 code is used for the

 verification of the system

 by CADP Toolbox.

• CADP is a popular Toolbox

 developed by the VASY

 team at INRIA .

 6

DILL (Digital Logic in LOTOS)

Library of Specification

 Description Language

 (J. K Turner/ 1999)

Here circuit is described by m4

 macro language

Basic elementary elements

 are AND, OR and Not gate.

Features of Black box and
 White box.

Component White box Black box

 encoder/decoder

 comparator

 parity checker

 Mux/ demux

 latch

 flipflop

 counter
 register
 memory

7

Macros for describing circuits in DILL

MComp - reproduction of circuit component

MWire - reproduction of connected wire.

example:

“Register_N_Decl” defines N-bit register

in DILL Library :

D Q

 DFF

D_N-1

D Q

 DFF

D_N-2

D Q

 DFF

QN-2

QN-1

Q0 D_0

Clock

Qbar

Qbar

Qbar

MWire(BIT_W,`D')

MWire(BIT_W, `Q, Qbar')

MComp(BIT_W ,Clk=, `DFlipFlop

[D, Clk=, Q, Qbar]')

8

MBus (Bus containing Group of Wires)

But, in the digital circuits it is quite usual that some related signals are regarded as

a

 whole.

 For example, in a computer system a group of 16-bit data signals could be seen as

 one signal carried by a data bus.

Using the term from computer hardware, we refer to a wire carrying the multi-bit signal

as a bus.

For this, we wrote another macro definition named MBus which is supported by the m4

macro library, being ultimately translated into a LOTOS specification as

“gates_BIT_W” syntax.

 9

define((`Register_N_Decl', `define ((`BIT_W', $1)‘

 `declare(`$0$1',`DFlipFlop_Decl

 process `Register_' BIT_W [MBus(BIT_W,`D'), Clk,

MBus(BIT_W, `Q, Qbar')] :noexit:=

 hide MWire(BIT_W,Qbar) in

 MComp(BIT_W ,Clk=, `DFlipFlop [D, Clk=, Q, Qbar]')

 endproc (* `Register_' BIT_W *)

 ')')

10

Bitarray operator

concates a bit array and bit, or a bit and a bit array to form new bit array

concates two bitarrays to form a new bitarray

. Gets the value of a particular bit from a bitarray.

DILL Data Type Bitarray operator

….…. process Register_4Aux[D_4, Clk, Q_4] (dtD_4 : BitArray, dtClk : Bit, dtQ_4 : BitArray) noexit :=

 (D_4 ? dtD_4 : BitArray;

 Register_4Aux[D_4, Clk, Q_4] (dtD_4, dtClk, dtQ_4)

 [] Clk ? newdtClk : Bit;

 ([(dtClk ne 0 of Bit) or (newdtClk ne 1 of Bit)] ->

 Register_4Aux[D_4, Clk, Q_4] (dtD_4, dtClk, dtQ_4)

 []

 [(dtClk eq 0 of Bit) or (newdtClk eq 1 of Bit)] ->

 (Let dtD_4 : BitArray = Bit (dtD_4.3)#(dtD_4.2)#(dtD_4.1)#(dtD_4.0) in

 Register_4Aux[D_4, Clk, Q_4] (dtD_4, dtClk, dtQ_4)))

 []

 Q_4 ! dtQ_4;

 (Let dtQ_4 : BitArray=(((Bit (1)#1)#0)#0) in

 Register_4Aux[D_4, Clk, Q_4] (dtD_4, dtClk, dtQ_4))))…………..

High-level Language: HDCaml

 11

 Circuit Types

 type signal = Circuit.signal Signals represent bit vectors.

 type circuit = Circuit.circuit A circuit is a completed circuit design.

Example of HDCaml is shown in slide no. 14

12

Internal Circuit Representation

In HDCaml, to interpret the described logic circuit composition, and to use it for the output

generator function to generate output code , the data type ie. Circuit data type is defined.

13

Simple Example of Generated LOTOS Code from HDCaml

•

•

14

REG Output

B
clk

A

open Hdcaml;;

 open design;;

let reg_module enable input1 input2 =

 let output = reg enable (input1 +: input2) in

 output

let reg_module_design input_width =

 start_circuit “reg_module”;

 let enable = input “enable” 1 in

 let input1 = input “A” input_width in

 let input2 = input “B” input_width in

 output “output” (reg_module enable input1 input2);

let circuit = get_circuit () in

Lotos.output_netlist circuit;;;

reg_module_design 4;;

specification reg_module [reset, clock, A, B,

enable, output]: noexit

library
OpenDill

endlib

behaviour

 reg_module [reset, clock, A, B, enable, output]

Where
 process reg_module [A, B, enable, output] :

noexit :=

 hide output, n_13 in

 (

 Register_4 [enable, n_13, output]
 |[n_13]|

 FullAdder_4 [A, B, n_13]

)

 endproc

 endspec

Example of HDCaml and generated LOTOS code

#1. Circuit connection of addition of 2 nput

#2. HDCaml code of the circuit connection

#3. Generated LOTOS code from HDCaml

#1.

#2. #3

15

Peculiar problem to LOTOS code generation

Definition of internal connected line

If the circuit is connected to the multiple devices (sub circuit) within it, it is

necessary to describe the internal signal/wire connecting the sub circuit.

2. Correspondence to RTL description

In HDCaml, the number of bits (BitWidth/BitArray) can be freely defined, because of rich in

different operators. However, it is difficult to directly generate code of N-bit in LOTOS.

3. Process synchronization

In HDCaml, there is no clear process synchronization, as circuit described here is at RTL

level, where as in the process definition by LOTOS, each operation process should describe

the synchronizing gate specifying it.

For example, … output = ((A &: B) |: C) ….. hide signal
 And2[A, B, signal] |[signal]|

 Or2 [C, signal, output]…….

HDL

Case Study 1

16

17

Each Internal composition is described as function

The bitwidth is specified at call

Circuit connection of Cell module

 (fixed for 3-cells).

HDCaml Code of cell_module

……..let cell_module enable yin xin coeff (*+) =

let cell_output = reg enable (yin +: (xin *: coeff)) in

cell_output ;;

let cell_module_design xin_width coeff_width yin_width =

 start_circuit “cell_module”;

 let enable = input “enable” 1 in

 let x0 = input “x0” xin_width in

 let x1 = signal “x1” xin_width in

 x1 <== “x1_reg” – enable x0;

 let x2 = signal “x2” xin_width in

 x2 <== “x2_reg” – reg enable x1;

 let x3 = signal “x3” xin_width in

 x3 <== “x3_reg” – reg enable x2;

 let y3 = input “zero” yin_width in

 let coeff3 = input “w3” coeff_width in

 let y2 = signal “y2” yin_width in

 y2 <== (cell_module enable y3 x2 coeff3(*+));

 let coeff2 = input “w2” coeff_width in

 let y1 = signal “y1” yin_width in

 y1 <== (cell_module enable y2 x1 coeff(*+));

 let coeff1 = input “w3” coeff_width in

 output “y0” (cell_module enable y1 x0 coeff (*+));

 let circuit = get_circuit () in

 Lotos.output_netlist circuit; ;;

 cell_module_design 2 2 4;;

18

……..

hide y1, n_34, n_33, y1_reg, y2, n_30, n_29, y2_reg,
n_25, n_24, x2, x3_reg, x1, x2_reg, x1_reg in

 ………..

 let x1 = signal “x1” xin_width in

 x1 <== “x1_reg” – enable x0;
 let x2 = signal “x2” xin_width in

 x2 <== “x2_reg” – reg enable x1;
 let x3 = signal “x3” xin_width in

 x3 <== “x3_reg” – reg enable x2;

 let y2 = signal “y2” yin_width in

 y2 <== (cell_module enable y3 x2 coeff3(*+));
…….

 let y1 = signal “y1” yin_width in

 y1 <== (cell_module enable y2 x1 coeff(*+));

 Definition of internal connected line

 in a circuit is generated in between
 hide ~ in

Generation of Internal connected line in LOTOS

Each wires behaves as a BUS

19

Generation of Bit Operation in LOTOS Code

 Correspondence to RTL circuit description ,

 LOTOS is described by Bit operation

 Bit Operation module use

 definition of DILL

……..

 hide (*internal bus*) in
 ((Register_4 [enable, n_34, y0]) |[enable, n_34]|

 ((FullAdder_4 [y1, n_33, n_34]) |[n_33]|
 ((Multiplier_2_4 [x0, w3, n_33]) |[x0]|

 ((Register_4 [enable, n_30, y1_reg]) |[enable, n_30]|

 ((FullAdder_4 [y2, n_29, n_30]) |[n_29]|
 ((Multiplier_2_4 [x1, w2, n_29]) |[x1]|

 ((Register_4 [enable, n_25, y2_reg]) |[enable, n_25]|
 ((FullAdder_4 [zero, n_24, n_25]) |[n_24]|

 ((Multiplier_2_4[x2, w1, n_24]) |[x2]|

 ((Register_2 [enable, x2, x3_reg]) |[enable]|
 ((Register_2 [enable, x1, x2_reg]) |[enable]|

 (Register_2 [enable, x0, x1_reg])
)))))))))))

……………

20

Generation of Process synchronization in LOTOS

……..

 hide (*internal bus*) in
 ((Register_4 [enable, n_34, y0]) |[enable, n_34]|

 ((FullAdder_4 [y1, n_33, n_34]) |[n_33]|
 ((Multiplier_2_4 [x0, w3, n_33]) |[x0]|

 ((Register_4 [enable, n_30, y1_reg]) |[enable, n_30]|

 ((FullAdder_4 [y2, n_29, n_30]) |[n_29]|
 ((Multiplier_2_4 [x1, w2, n_29]) |[x1]|

 ((Register_4 [enable, n_25, y2_reg]) |[enable, n_25]|
 ((FullAdder_4 [zero, n_24, n_25]) |[n_24]|

 ((Multiplier_2_4[x2, w1, n_24]) |[x2]|

 ((Register_2 [enable, x2, x3_reg]) |[enable]|
 ((Register_2 [enable, x1, x2_reg]) |[enable]|

 (Register_2 [enable, x0, x1_reg])
)))))))))))

……………

 There must be synch-

 ronization wire in betw-
 een two processes in

 case of LOTOS.

 The synchronization

 line does not appear
 clearly in case of

 HDCaml.

 Here each wires

 behaves as a Bus
 instead of behaving as

 like a single wire.

21

……..

y1, n_34, n_33, y1_reg, y2, n_30, n_29, y2_reg, n_25, n_24, x2, x3_reg, x1, x2_reg,

x1_reg in

Generated LOTOS code output showing Internal Composition, RTL description,

and Process synchronization

1. Green color shows

Global input.

2. Blue color shows

internal connected

wire.

3. Red color shows

Global output.

22

Structural and Behavioral Expression of circuit

 F Adder

A_4

Bitarray Bit
Bitarray

B_4

O_4 Multiplier

b_2

c_4 Register D_4 Q_4

23

……..

process Register_4[D_4, Clk, Q_4] : noexit :=

 Register_4Aux[D_4, Clk, Q_4]

 (Bit (X)#X#X#X, (* dtD_4.(0..3) : 4Bit*)

 X of Bit, (*dtClk : 1Bit*)

 Bit (X)#X#X#X (*dtQ_4.(0..3) :4Bit *)

where

 process Register_4Aux[D_4, Clk, Q_4] (dtD_4 : BitArray, dtClk : Bit, dtQ_4 : BitArray) noexit :=

 (D_4 ? dtD_4 : BitArray;

 Register_4Aux[D_4, Clk, Q_4] (dtD_4, dtClk, dtQ_4)

 [] Clk ? newdtClk : Bit;

 ([(dtClk ne 0 of Bit) or (newdtClk ne 1 of Bit)] ->

 Register_4Aux[D_4, Clk, Q_4] (dtD_4, dtClk, dtQ_4)

 []

 [(dtClk eq 0 of Bit) or (newdtClk eq 1 of Bit)] ->

 (Let dtD_4 : BitArray = Bit (dtD_4.3)#(dtD_4.2)#(dtD_4.1)#(dtD_4.0) in

 Register_4Aux[D_4, Clk, Q_4] (dtD_4, dtClk, dtQ_4)))

 []

 Q_4 ! dtQ_4;

 (Let dtQ_4 : BitArray=(((Bit (1)#1)#0)#0) in

 Register_4Aux[D_4, Clk, Q_4] (dtD_4, dtClk, dtQ_4))))

 ……………..

BB Behavioral Expression Register component

24

 ……………..

BB Behavioral Expression of Multiplier component

25

BB Behavioral Expression of Full Adder component

26

 caesar.adt

 caesar

Generated Structural LOTOS Code + Added Behavioral LOTOS

code

27

Verification of Generated LOTOS Code

 Case Study 2

28

29

4*4 Multiplier Circuit

N*N Circuit connection diagram of parallel multiplier

30

let multiplier x_l y_l=

…

let rec x_loop x_l y p_l c_l=
match x_l with

| [] -> [zero 1],[]

| x::x_r-> let bit_mul= x &: y in

 let p_out,c_out= full_adder bit_mul

 (List.hdp_l) (List.hdc_l) in
 let p_r,c_r = x_loopx_ry (List.tlp_l) (List.tlc_l) in

 p_out::p_r,c_out::c_r

 in

let rec y_loop x_l y_l p_l c_l =

 match y_l with
 | [] -> ripple_adderp_lc_l(zero 1)

 | y::y_r->

 let p_new, c_new= x_loop x_l y p_lc_l in

 (List.hdp_new)

 ::(y_loopx_ly_r(List.tlp_new) c_new)
 in

y_loopx_ly_l(ini_listx_len) (ini_listx_len)

;;

... …(Xor2 [n_39, n_45, output_1] |[n_39, n_45]|

 (Xor2 [n_37, n_27, n_45] |[n_37, n_27]|

 (Or2 [n_43, n_40, n_44] |[n_43, n_40]|

 (Or2 [n_42, n_41, n_43] |[n_42, n_41]|

 (And2 [n_39, n_37, n_42] |[n_39, n_37]|
 (And2 [n_37, n_27, n_41] |[n_37, n_27]|

 (And2 [n_27, n_39, n_40] |[n_27, n_39]|

 (And2 [a1, b2, n_39] |[a1]|

 (Xor2 [n_30, n_36, n_37] |[n_30, n_36]|

 (Xor2 [n_20, n_18, n_36] |[n_20, n_18]|
 (Or2 [n_34, n_31, n_35] |[n_34, n_31]|

 (Or2 [n_33, n_32, n_34] |[n_33, n_32]|

 (And2 [n_30, n_20, n_33] |[n_30, n_20]|

 (And2 [n_20, n_18, n_32] |[n_18]|

 (And2 [n_18, n_30, n_31] |[n_30]|
 (And2 [a2, b1, n_30] |[b1]|

 (Xor2 [n_22, n_28, output_0] |[n_22, n_28]|

 (Xor2 [n_21, n_19, n_28] |[n_21, n_19]|

 (Or2 [n_26, n_23, n_27] |[n_26, n_23]|

 (Or2 [n_25, n_24, n_26] |[n_25, n_24]|
 (And2 [n_22, n_21, n_25] |[n_22, n_21]|

 (And2 [n_21, n_19, n_24] |[n_19]|

 (And2 [n_19, n_22, n_23] |[n_22]|

 And2 [a1, b1, n_22]...

HDCaml and Generated LOTOS code of Multiplier circuit

31

Conclusion

LOTOS Code Generation from HDCaml

 The technique was examined about the procedure for generating the

 LOTOS code of N-bit from the circuit description in HDCaml.

 The LOTOS code generator module was extended that solved the

 problems of internal connected line, Bit operation, and process

 synchronization by mapping to DILL library.

 Finally N-bit structural specification of LOTOS code was

 successfully generated from High-Level HDCaml code.

Behavioural Specification of the generated DILL library components is coded

 by hand to verify the generated LOTOS structural specification Code.

32

Future Tasks

There is incompleteness for solving the problem of connecting wire in repeated

 structures of N-Bit DILL components, for instance MComp(Count, Connecting

 Wire, Component) produces multiple instances of the component process, so there

 must be some connection line in between the components processes which is not

 shown in this research.

 We also need some improvement for the automatic generation of the behaviour

 expression of the generated DILL library components for N-bit.

33

References

 ISO/IEC 8807:“Information Processing System, Open Systems Interconnection,

 LOTOS – A Formal Description Technique Based on the Temporal Ordering of

 Observational Behaviour,” 1989

 T. Hawkins : HDCaml : http://www.confluent.org/wiki/doku.php/hdcaml.

 INRIA, France :Objective Caml : http://caml.inria.fr/

 J.He, K.J.Turner, “Extended DILL: Digital Logic in LOTOS,” Technical Report CSM-142,

 University of Stirling, 1999.

Karl Flicker : HDCaml improvements :http://karl-flicker.at/hdcaml/

C. A. R. Hoare: “Communicating sequential processes”, Communications of the ACM,

Volume 21 , No.8 pp.666-677, 1978.

34

References

 ISO/IEC15437: “Enhancements to LOTOS (E-LOTOS),” 2001

H. Ehrig, B. Mahr: “Fundamentals of Algebraic Specification, Part 1,” Springer

Verlag, Berlin, 1985.

CADP (Caesar/Aldebaran Development Package), A Software Engineering Toolbox for

 Protocols and Distributed Systems, INRIA/VASY, France,
http://www.inrialpes.fr/vasy/cadp/

 Thank You

35

